Double Integration

Iterated integrals
1. Calculate the value of the following iterated integrals:
 (a) \[\int_{0}^{1} \int_{-1}^{2} (x^2 + y^2) \, dx \, dy \]
 (b) \[\int_{-1}^{2} \int_{0}^{1} (x^2 + y^2) \, dy \, dx \]

 What conclusion can you draw from the results of part (a) and (b)?

Double integrals
2. By integrating with respect to \(x \) first and \(y \) second, evaluate the double integral \(\iint_{R} xy \, dA \), where \(R \) is the region bounded by the curves \(y = x \) and \(y = x^3 \).

3. "The double integral can be evaluated by integrating either with respect to \(x \) first and \(y \) second or vice versa." Do you agree with this statement?

 Justify your answer by evaluating the integral \(\iint_{R} e^{-x} \, dA \), where \(R \) is the region in the \(x \)-\(y \) plane bounded by the lines \(y = x, y = 0, \) and \(x = 1 \).

Finding volumes
4. (a) Show how to use an iterated integral of the form \(\int_{a}^{b} \int_{0}^{h(y)} f(x, y) \, dx \, dy \) to find the volume of the solid that lies under the surface \(y = e^{-x} e^{-y} \) and over the triangular region \(R \) with vertices \((0,0), (1,0), (0,1)\).

 (b) Find the volume of the solid in part (a) by evaluating an iterated integral of the form \(\int_{a}^{b} \int_{0}^{h^{-1}(x)} f(x, y) \, dy \, dx \).

Finding areas
5. (a) Find the points of intersection of the line \(y = 2x \) and the parabola \(y^2 = 16x \).

 (b) Find, by a double integral, the area enclosed by \(y = 2x, y^2 = 16x \) and the ordinate at \(x = 1 \).

Finding mass, centroid and moments of inertia
6. Evaluate the mass, centroid and moment of inertia about \(x \) and \(y \) of an object is the density function, \(\rho(x,y) = x \) and the area is enclosed by \(x = 0, y = a, \) and \(y = x \).